Передача данных через радиоканал. Способы организация передачи информации по радиоканалу. Основные характеристики радиомодемов


Обзорный проект

Описание:

Основна я идея проекта состоит в том, чтобы передать данные от одного пункта до другого. Эта передача может быть как беспроводная по радиоканалу, так и по проводам.
В данном проекте передаются 4 типа данных от различных типов датчиков по радиоканалу.
В качестве датчиков используется температурный датчик, датчик уровня топлива,
датчик давления и датчик числа оборотов за 1 минуту. Все эти датчики имеют аналоговый выход в форме напряжения, которое преобразуется в цифровые данные, которые мы можем передать.

Почему необходимо преобразовывать аналоговые сигналы в цифровые?

Предположим , что мы преобразовали аналоговые сигналы в цифровые данные. Что дальше? Поскольку четыре различных типа данных мы должны передать по одному каналу, то нам надо их объединить. Аналоговые сигналы объединить невозможно, для цифровых сигналов мы можем использовать цифровой коммутатор, который будет объединять данные в один поток следующими один за другим.
Примечание: скорость передачи данных от 12 до 15 циклов в 1 минуту.

Передача данных:

Блок-схема показывает пример передачи данных с использованием
какой либо модуляции сигнала.

После получения данных от приемника и их демодуляции мы получим реальные данные,
которые передавались передатчиком и мы легко их показывать.

Функциональная блок-диаграмма:

Схема цифровой части:

Рис.1 (секция А)

Рис.2 (Секция В - радиочастотный передатчик)

Описание схемы:

В секции "А" изображен цифровой приемник сигналов от 4-х датчиков. Здесь используется аналоговый
переключатель IC M4066, который также хорошо работает как и цифровой.
Он имеет четыре устройства ввода/вывода и отдельные выводы для контроля передачи аналоговых сигналов через коммутатор. Линии управления коммутатором соединяются с выводами микроконтроллера (порты 2.1 - 2.4).
Поскольку эти все сигналы аналоговые, так что мы должны преобразовать их в цифровые форму
посредством аналого-цифрового преобразователя. Для этой цели мы использовали IC ADC0804.
Это 8-разрядный АЦП и на его выходе мы имеем цифровой эквивалент аналогового сигнала с
диапазоном значений от 0 до 255. Из АЦП 8-разрядные данные поступают в микропроцессор
(порты 1.0 - 1.7). Посредством мультиплексирования 4 аналоговых сигналов последовательно
переводятся в цифровую форму и в виде одного потока данных передаются в модулятор передатчика.

Рис.3 (комментарий к цифровой схеме)

Чтобы передать некоторый сигнал на расстояние мы должны промодулировать его в передатчике. Хорошо, когда схема модулятора совмещена с передатчиком. В данной схеме используется частотная модуляция из-за ее простоты и получения большой дальности передачи сигнала, которая может составить около 2 км. Так например вещательный диапазон FM достаточно широк для возможной передачи данных. Этот передатчик передает сигнал на частоте 98 МГц. Но сигнал передатчика не будет точно соответствовать модулирующему цифровому сигналу (форма меандра). Здесь мы говорим, что сигнал лишь похож по форме на меандр. Точный вид формы сигнала передатчика можно увидеть на осциллографе.

Радиочастотный передатчик в данном проекте собран по простейшей схеме (рис.2). Он представляет собой LC возбудитель на одном транзисторе совмещенный с цепями ЧМ модулятора. Выходная мощность передатчика около 0,8 Вт. Частота автогенератора 98 МГц. Приемник - обычный радиовещательный с подходящим УКВ диапазоном. Дальность уверенного приема и демодуляции цифровых данных не более 2-х километров. И при использовании данной аппаратуры не может быть улучшена.

PS:
Данная статья приводится лишь как пример использования технологии. В ней не конкретизируются типы эффективных модуляторов/демодуляторов и используется технически несовершенный радиоканал для передачи данных.

В беспроводных радиоканалах передача информации осуществляется с помощью радиоволн. В информационных сетях используются волны частотой от сотен мегагерц до десятков гигагерц.

Для организации канала передачи данных в диапазонах дециметровых волн (902...928 МГц и 2,4...2,5 ГГц) требуется регистрация в Госсвязьнадзоре. Работа в диапазоне 5,725...5,85 ГГц лицензирования не требует.

Чем выше рабочая частота, тем больше емкость (число каналов) системы связи, но тем меньше предельные расстояния, на которых возможна прямая передача между двумя пунктами без ретрансляторов. Стремление к увеличению числа каналов порождает тенденцию к освоению новых более высокочастотных диапазонов.

Радиоканалы используются в качестве альтернативы кабельным системам при объединении сетей отдельных подразделений и предприятий
в корпоративные сети. Радиоканалы являются необходимой составной частью в спутниковых и радиорелейных системах связи, применяемых в территориальных сетях, а также в сотовых системах мобильной связи.

Радиосвязь используют в корпоративных и локальных сетях, если затруднена прокладка других каналов связи. Во многих случаях построения корпоративных сетей применение радиоканалов оказывается более дешевым решением по сравнению с другими вариантами.

Радиоканал позволяет:

· выполнять роль моста между подсетями;

· быть общей средой передачи данных в ЛВС;

· служить соединением между центральным и терминальными узлами в сети с централизованным управлением;

· соединять спутник с наземными станциями.

Радиомосты используют для объединения между собой кабельных сегментов и отдельных ЛВС в пределах прямой видимости и организации магистральных каналов в опорных сетях. Они выполняют ретрансляцию
и фильтрацию пакетов. При этом осуществляется двухточечное соединение с использованием направленных антенн. Дальность связи ограничивается пределами прямой видимости (обычно до 15…20 км с расположением антенн на крышах зданий). Мост должен иметь два адаптера: один для формирования сигналов в радиоканале, другой – для приема сигнала в кабельной подсети.

При использовании радиоканала в качестве общей среды передачи данных сеть называют RadioЕthernet (стандарт IEEE 802/11). Обычно такую сеть применяют внутри зданий. В состав аппаратуры входят приемопередатчики и антенны. Связь осуществляется на частотах от одного до нескольких гигагерц. Расстояния между узлами не превышают несколько десятков метров.

В соответствии со стандартом IEEE 802/11 возможны два способа передачи двоичной информации в ЛВС с обеспечением защиты информации от нежелательного доступа.

Первый способ называют методом прямой последовательности DSSS (Direct Sequence Spread Spectrum). В нем защита информации основана на избыточности - каждый бит данных представлен последовательностью из 11-ти элементов («чипов»). Эта последовательность создается с помощью алгоритма, известного участникам связи, и поэтому ее можно дешифрировать при приеме.

Сохранение высокой скорости обеспечивается расширением полосы пропускания. В DSSS по IEEE 802/11 информационная скорость может доходить до 6 Мбит/с. При этом полоса пропускания составляет 22 МГц в диапазоне частот 2,4 ГГц.

Следует заметить, что избыточность повышает помехоустойчивость. Действительно, помехи обычно имеют более узкий спектр, чем 22 МГц, и могут исказить часть “чипов”, но высока вероятность того, что по остальным “чипам” значение бита будет восстановлено. При этом не нужно стремиться к большим значениям отношения сигнал/помеха, сигнал становится шумоподобным, что и обусловливает, во-первых, дополнительную защиту от перехвата, во-вторых, не создает помех, мешающих работе другой радиоаппаратуры.

Второй способ метод частотных скачков FHSS (Frequency Hopping Spread Spectrum). Согласно этому методу полоса пропускания по IEEE 802/11 делится на 79 поддиапазонов. Передатчик периодически (с шагом 20...400 мс) переключается на новый поддиапазон, причем алгоритм изменения частот известен только участникам связи и может изменяться синхронно, что и затрудняет несанкционированный доступ к данным.

Вариант использования радиоканалов для связи центрального и периферийного узлов отличается тем, что центральный пункт имеет ненаправленную антенну, а в терминальных пунктах при этом применяются направленные антенны. Дальность связи составляет десятки метров, а вне помещений – сотни метров.

Спутниковые каналы являются частью магистральных каналов передачи данных. В них спутники могут находиться на геостационарных (высота 36 тыс. км) или низких орбитах. В случае геостационарных орбит заметны задержки на прохождение сигналов (к спутнику и обратно около 500 мс). Покрытие поверхности всего земного шара возможно с помощью четырех спутников.

В низкоорбитальных системах обслуживание конкретного пользователя происходит попеременно разными спутниками. Чем ниже орбита, тем меньше площадь покрытия и, следовательно, требуется или больше наземных станций, или необходима межспутниковая связь, что, естественно, приводит к утяжелению спутника. Число спутников также значительно больше (обычно несколько десятков).

Поставкой оборудования для организации корпоративных и локальных беспроводных сетей занимается ряд фирм, в том числе известные фирмы Lucent Technologies, Aironet, Multipoint Network.

В оборудование беспроводных каналов передачи данных входят сетевые адаптеры и радиомодемы , поставляемые вместе с комнатными антеннами и драйверами. Они различаются способами обработки сигналов, характеризуются частотой передачи, пропускной способностью, дальностью связи.

Сетевой адаптер вставляют в свободный разъем шины компьютера. Например, адаптер WaveLAN (Lucent Technologies) подключают к шине ISA, он работает на частоте 915 МГц, пропускная способность 2 Мбит/с.

Радиомодемы могут работать в дуплексном или полудуплексном режиме. При этом, например, модем серии RAN (Multipoint Networks) имеет следующие характеристики: со стороны порта данных – интерфейс RS-232C, RS-449 или V.35, скорость до 128 кбит/с, а со стороны радиопорта – частоты 400...512 или 820...960 МГц, ширина радиоканала 25...200 кГц.

Технология передачи данных по радиоканалу довольно популярна, и многие производители электросчетчиков обратили на нее внимание.

Главные плюсы такой технологии: дешевизна, простота, дальность действия (до 10 км) и низкое энергопотребление (возможна автономная работа от батарейки до 10 лет).

Для беспроводного обмена данными используются радиочастотные диапазоны, не требующие оформления разрешений. В России для этих целей выделены частотные диапазоны 433.075-434.750 МГц, 868,7-869,2 МГц и 2400-2483,5 МГц.

Диапазон 433 используется дольше остальных, поэтому на этих частотах работает большое количество устройств, радиоэфир сильно загружен и сильно «засорен» помехами особенно в городских условиях. АСКУЭ, работающая на этих частотах применима исключительно в сельской местности.

Для диапазона 868 разрешена мощность в 2,5 раза больше, чем у 433, поэтому антенны менее громоздкие. Также на этих частотах меньше уровень фоновых и индустриальных помех. В настоящее время при выполнении систем АСКУЭ в РФ этот диапазон частот не нашел широкого применения, однако технологии, использующие частоты 868 МГц, будут развиваться.

Развитие технологии

Чтобы решить проблемы дальности связи и плохого сигнала, в последние годы появились радиомодемы с функцией ретрансляции сигнала. Эти устройства принимают сигнал от других модемов и передают его дальше. Таким образом, если расстояние между базовым модемом и каким-либо модемом сети больше, чем максимальное расстояние прямой видимости, то сигнал пойдет через промежуточные модемы.


Помимо ретрансляции радиомодемы научились выстраивать единую сеть и автоматически определять кратчайший путь до приемного оборудования. В итоге, если какой-то модем выйдет из строя, то сеть сама перестроится и передаст данные через другой модем. Благодаря такому механизму значительно повышается надежность всей сети.

Эти идеи с ретрансляцией сигнала и построением сети производители радиомодемов переняли из стандарта ZigBee.

О стандарте передачи данных ZigBee

Стандарт ZigBee предусматривает частотные каналы в диапазонах 868 МГц, 915 МГц и 2,4 ГГц. Наибольшие скорости передачи данных и наивысшая помехоустойчивость достигаются в диапазоне 2,4 ГГц. Поэтому большинство производителей микросхем выпускают приемопередатчики именно для этого диапазона, в котором предусмотрено 16 частотных каналов с шагом 5 МГц (полоса частот 2400-2483,5 МГц).

Скорость передачи данных вместе со служебной информацией в эфире составляет 250 кбит/c . При этом средняя пропускная способность узла для полезных данных в зависимости от загруженности сети и количества ретрансляций может лежать в пределах 5 ... 40 кбит/с.

Расстояния между узлами сети составляют десятки метров при работе внутри помещения и сотни метров на открытом пространстве. За счет ретрансляции зона покрытия сети может значительно увеличиваться.

В основе сети ZigBee лежит ячеистая топология (mesh-топология). В такой сети, каждое устройство может связываться с любым другим устройством как напрямую, так и через промежуточные узлы сети. Ячеистая топология предлагает альтернативные варианты выбора маршрута между узлами. Сообщения поступают от узла к узлу, пока не достигнут конечного получателя. Возможны различные пути прохождения сообщений, что повышает доступность сети в случае выхода из строя того или иного звена.*

* по материалам сайта http://www.wless.ru


Чтобы наглядно понять преимущества технологии ZigBee представим 15-ти этажный жилой, где все счетчики оборудованы ZigBee-модемами. Если мощность сигнала модемов на всех этажах одинакова и ее хватает только на преодоление 4-х этажей, то для счетчиков 15 этажа маршрут может быть следующий: 15 этаж – 11 этаж -7 этаж – 3 этаж – подвал. Если на 11 этаже маршрутизатор перестанет работать, то сеть автоматически инициирует поиск нового маршрута, который может получиться следующим: 15 этаж – 12 этаж - 8 этаж – 4 этаж – подвал.

Такой подход повышает работоспособность и помехоустойчивость всей сети и дальность связи, даже если каждый модем в отдельности является маломощным устройством.

Подведем итоги

  • Системы АСКУЭ на радиомодемах, как правило, недорогие;
  • Радиомодемы хорошо зарекомендовали себя в загородных поселках, где радиоэфир не так загружен, как в городе;
  • Для крупных поселков необходимо ориентироваться на радиомодемы с ретрансляцией сигнала.

В цифровых вещательных телевизионных системах по радиоканалам необходимо передавать цифровой сигнал – транспортный поток MPEG-2 (точнее – транспортный поток системыDVB-T). Этот цифровой сигнал необходимо передавать в выделенной для данного радиоканала полосе частот. При этом необходимо решать задачи модуляции несущего колебания цифровым сигналом и защиты его от помех.

Одним из главных требований к системам цифрового телевидения является использование существующих радиоканалов телевизионного вещания.

Для трансляции сигналов цифрового телевидения, особенно если надо передавать сигналы нескольких программ обычной (стандартной) четкости в одном радиоканале или сигнал ТВЧ, необходимо увеличивать эффективность использования полосы частот радиоканала связи, что достигается применением более сложных методов модуляции несущей.

Другое важнейшее требование к системе цифрового телевидения – обеспечение высокой помехоустойчивости.

Как известно, цифровая информация передается в виде двоичных символов – единиц и нулей. Из двоичных символов состоят кодовые комбинации (кодовые слова), каждая из которых в случае цифрового телевизионного сигнала может содержать информацию, например, о значении одного отсчета этого сигнала. В результате действия шумов и помех отдельные двоичные символы могут быть приняты с ошибкой. Это объясняется тем, что само по себе преобразование аналоговых сигналов в цифровую форму еще не гарантирует высокой помехозащищенности передаваемой информации. При этом надо иметь в виду, что проявление ошибок в цифровой телевизионной системе существенно отличается от заметности флуктуационного шума в аналоговой системе. Ошибка в одном двоичном разряде может изменить значение отсчета изображения многократно, если она произошла в старшем разряде кодового слова. При использовании различных методов сокращения избыточности телевизионного сигнала одиночная ошибка может привести к искажению, например, участка строки или даже группы строк. Интенсивность ошибок характеризуется их относительной частотой f ош [ош/дв. символ], показывающей вероятность того, что принятый отдельный двоичный символ ошибочен. В англоязычной технической литературе эта величина обычно называетсяBER(BitErrorRate–частота ошибок на 1 бит или коэффициент ошибок ).

Вероятность ошибки в одном разряде может составлять 10 –4 …10 –5 . Это означает, что при скоростях цифрового потока данных, равных нескольким десяткам Мбит/с, каждую секунду будут происходить сотни ошибок. Качество такого изображения будет неудовлетворительным. На практике даже несколько белых или черных точек на изображении могут оказаться заметными.

Рассмотрим основные причины возникновения ошибок:

    воздействие шумов различной природы (тепловой шум, шум генерации-рекомбинации, фликкер-шум и т.д.), в большинстве случаев проявляющиеся во входных каскадах приемной телевизионной аппаратуры;

    индустриальные и атмосферные помехи;

    помехи, создаваемые радиопередатчиками, работающими в этой же полосе частот в соседних районах (явление интерференции);

    многолучевое распространение радиоволн, возникающее из-за отражений от искусственно созданных сооружений, например, жилых зданий, и от естественных возвышенностей, обусловленных рельефом поверхности земли.

Ошибки при приеме двоичных символов классифицируются на одиночные и пакетные (групповые). Одиночные ошибки, как правило, не зависят друг от друга. Пакетные ошибки искажают сразу несколько соседних двоичных символов. Например, вследствие воздействия достаточно продолжительной импульсной помехи несколько идущих подряд двоичных символов становятся равными нулю или единице.

Традиционными способами повышения помехоустойчивости цифровых телевизионных систем, обеспечивающих наземное вещание, являются:

    увеличение мощности радиопередатчика;

    выбор антенно-фидерных устройств с оптимальными для конкретного случая параметрами;

    уменьшение уровня шумов в телевизионных приемниках путем применения малошумящей элементной базы;

    рациональное планирование использования радиоканалов на смежных территориях.

К сожалению, все эти методы имеют ограничения, связанные с реальными техническими возможностями, с конечной шириной доступного эфирного диапазона частот, с высокой стоимостью приемной телевизионной аппаратуры и т.д.

В случае передачи цифровых сигналов значительное повышение помехоустойчивости может быть достигнуто путем применения кодов, исправляющих ошибки. В цифровых телевизионных системах одновременно с помехоустойчивым кодированием дополнительно выполняется операция перемешивания данных цифрового потока, которая преобразует пакетные ошибки в совокупность одиночных ошибок. Данное преобразование имеет большое практическое значение, так как исправление одиночных ошибок является значительно более простой технической задачей по сравнению с исправлением пакетных ошибок.

Одновременно выполняемые операции перемешивания данных и помехоустойчивое кодирование очень часто называются канальным кодированием, которое реализуется непосредственно перед передачей цифровой информации по радиоканалу и, как правило, совмещается с модуляцией. Канальное кодирование, как правило, основано на введении некоторой избыточности в передаваемое сообщение для того, чтобы влияние помех на цифровой сигнал в радиоканале было минимальным.

Это удобно, повышает безопасность, позволяет решать самые разнообразные задачи, в том числе контролировать ход производственных процессов и работу оборудования.

Именно в последних случаях часто приходится устанавливать в точках, значительно удаленных не только от проводных сетей связи, но зон покрытия мобильных операторов.

Сегодня только видеонаблюдение по радиоканалу может предложить огромную дальность связи, при этом позволяя устанавливать транслятор и приемник в условиях сложного рельефа.

Особенности радиорелейной связи в системах видеонаблюдения

Когда вспоминается радиорелейная связь — людям с техническим образованием приходят на ум громоздкие, высокие вышки, мощнейшие усилители и огромные расходы энергии. Сегодня это совсем не так.

Радиорелейные системы связи для решения задач видеонаблюдения, это:

  1. достаточно компактные и умеренно ресурсоемкие инженерные решения;
  2. возможность устанавливать трансляторы и приемники на крышах, любых опорах;
  3. оптимальное планирование инженерного решения станции передачи и приема, с устройствами наружного исполнения и оборудованием смешанного типа, с разделением функциональных узлов с возможностью их удобного размещения.

Организация радиорелейной связи имеет одно обязательное условие. Приемник и передатчик должны находиться в прямой видимости.

Кроме этого, при настройке канала передачи данных необходимо тщательное взаимное позиционирование антенн для получения стабильного сигнала и максимальной скорости трансляции.

Используемое оборудование

Если речь идет о передаче сигнала с сильно удаленных точек — необходимо проводить достаточно сложные работы установки профессионального оборудования и его настройки.

Сегодня для радиорелейных систем, чтобы эксплуатировать видеонаблюдение без проводов на больших расстояниях, используются:

  • системы на оборудовании, использующем технологию передачи PDH. Образовываемые каналы считаются низко и среднескоростными. При этом стоимость необходимых устройств — достаточно доступна, а требования к условиям установки трансмиттера и приемника не отличаются строгостью;
  • системы на технологии SHD — позволяют сформировать скоростные каналы. К примеру, с использованием оборудования уровня STM-16 видеопотоки можно транслировать со скоростью до 2.5 Гбит/с.

Все используемое для радиорелейной связи оборудование подразделяют на канальное (Half-Duplex) и магистральное (Full-Duplex).

При этом для нейтрализации помех, повышения устойчивости радиоканала в системах передачи используются сложные протоколы резервирования и формирования избыточности.

Однако сложное оборудование не всегда нужно среднестатистическому пользователю.

Видеонаблюдение без проводов готовые комплекты — предлагается в нескольких вариантах:

  1. как набор устройств, позволяющих сделать камеры видеонаблюдения без проводов из обычных, с передачей данных радиоканалом;
  2. как готовый комплект оборудования, где камеры, а иногда и — оснащены трансмиттерами, приемниками данных по радиочастотному сигналу.

Однако стоит помнить, что бытовое видеонаблюдение по радиоканалу комплект — очень капризное решение, с точки зрения среднестатистического пользователя.

Оно разработано для передачи сигнала на малые расстояния. Например, это может быть приемлемым вариантом для автомобиля, позволяя владельцу без технических навыков быстро ввести видеонаблюдение в строй.

Однако в доме, особенно с множеством стен и перегородок — над размещением камер придется подумать, а в некоторых местах сигнал просто не сможет пробиться через препятствия. То же самое можно сказать об охвате территории — с удаленных точек передача данных затрудняется.

Дальность передачи

Высокочастотное оборудование промышленного класса, работающее на частотах от 80 до 100 ГГц — имеет пиковую дальность передачи всего в несколько километров.

Расстояние между точками связи зависит от используемой несущей частоты.

К примеру:

  • трансляторы в 5-8 ГГц обеспечат 50 и выше километров дальности уверенного приема сигнала;
  • 70-80 ГГц — падение расстояния до 10 км;
  • отдельно рассматриваются редко используемые станции 60 ГГц, сигнал которых из-за особенностей воздуха имеет сильный коэффициент затухания, общая дальность связи — до 8 км.

Сегодня на рынке представлено множество решений радиорелейной связи с рабочей частотой от 400 МГц до 100 ГГц.

Так, при тумане, дожде, мощные низкочастотные станции показывают 35 км устойчивого приема, а в хорошую погоду — до 80-100 км.

Преимущества и недостатки радиорелейной передачи видеосигнала

Радиорелейные системы - это удобно, надежно, выгодно. Начальные вложения, несмотря на достаточно высокую стоимость оборудования, окупаются сторицей.

Предлагаемые на рынке устройства работают надежно, рассчитываются на 30-40 лет эксплуатации в жестоких условиях с перепадами температур, влажности, действием ультрафиолета и атмосферных осадков.

При этом купить комплект оборудования, инженерное решение и требования энергообеспечения которого позволят оптимально решить задачу передачи сигнала на большое расстояние — не составит труда.

Недостатки радиорелейной связи отмечаются только пользователями, потребности которых значительно меньше возможностей оборудования.

К примеру, можно назвать минусами:

  1. Необходимость построения инфраструктуры (опор, мер, системы питания).
  2. Потребность в тонкой настройке направленного оборудования.
  3. Высокая для частного лица стоимость.

Как видно из перечисленного — ни один из минусов радиорелейных систем не может считаться значимым, если речь идет о контроле работы оборудования на удаленной точке или решении других важных задач.

Заключение

Трансляция сигнала видеокамер по радиоканалу - это удобно, даже если не вести речь о профессиональном оборудовании.

Сегодня на рынке представлены удобные решения для обычных частных пользователей. К примеру, можно купить готовый комплект из трансляторов и приемников, к которому подключаются обычные камеры для образования беспроводной сети.

Это удобно в автомобиле, квартире, частном доме, так как позволяет избежать сложных работ, ремонта и быстро ввести видеонаблюдение в эксплуатацию.

А для компаний, заинтересованных в мониторинге удаленных точек — не составит никакого труда подобрать оптимальный вариант профессионального оборудования радиорелейной связи.

Видео: Видеонаблюдение по радио каналу, ночная вылазка на крышу

Loading...Loading...