Объем кэш памяти третьего уровня. Кэш память и её предназначение в процессоре

Насколько важен кэш L3 для процессоров AMD?

Действительно, имеет смысл оснащать многоядерные процессоры выделенной памятью, которая будет использоваться совместно всеми доступными ядрами. В данной роли быстрый кэш третьего уровня (L3) может существенно ускорить доступ к данным, которые запрашиваются чаще всего. Тогда ядрам, если существует такая возможность, не придётся обращаться к медленной основной памяти (ОЗУ, RAM).

По крайней мере, в теории. Недавно AMD анонсировала процессор Athlon II X4 , представляющий собой модель Phenom II X4 без кэша L3, намекая на то, что он не такой и необходимый. Мы решили напрямую сравнить два процессора (с кэшем L3 и без), чтобы проверить, как кэш влияет на производительность.

Нажмите на картинку для увеличения.

Как работает кэш?

Перед тем, как мы углубимся в тесты, важно понять некоторые основы. Принцип работы кэша довольно прост. Кэш буферизует данные как можно ближе к вычислительным ядрам процессора, чтобы снизить запросы CPU в более отдалённую и медленную память. У современных настольных платформ иерархия кэша включает целых три уровня, которые предваряют доступ к оперативной памяти. Причём кэши второго и, в частности, третьего уровней служат не только для буферизации данных. Их цель заключается в предотвращении перегрузки шины процессора, когда ядрам необходимо обменяться информацией.

Попадания и промахи

Эффективность архитектуры кэшей измеряется процентом попаданий. Запросы данных, которые могут быть удовлетворены кэшем, считаются попаданиями. Если данный кэш не содержит нужные данные, то запрос передаётся дальше по конвейеру памяти, и засчитывается промах. Конечно, промахи приводят к большему времени, которое требуется для получения информации. В результате в вычислительном конвейере появляются "пузырьки" (простои) и задержки. Попадания, напротив, позволяют поддержать максимальную производительность.

Запись в кэш, эксклюзивность, когерентность

Политики замещения диктуют, как в кэше освобождается место под новые записи. Поскольку данные, записываемые в кэш, рано или поздно должны появиться в основной памяти, системы могут делать это одновременно с записью в кэш (write-through) или могут маркировать данные области как "грязные" (write-back), а выполнять запись в память тогда, когда она будет вытесняться из кэша.

Данные в нескольких уровнях кэша могут храниться эксклюзивно, то есть без избыточности. Тогда вы не найдёте одинаковых строчек данных в двух разных иерархиях кэша. Либо кэши могут работать инклюзивно, то есть нижние уровни кэша гарантированно содержат данные, присутствующие в верхних уровнях кэша (ближе к процессорному ядру). У AMD Phenom используются эксклюзивный кэш L3, а Intel следует стратегии инклюзивного кэша. Протоколы когерентности следят за целостностью и актуальностью данных между разными ядрами, уровнями кэшей и даже процессорами.

Объём кэша

Больший по объёму кэш может содержать больше данных, но при этом наблюдается тенденция увеличения задержек. Кроме того, большой по объёму кэш потребляет немалое количество транзисторов процессора, поэтому важно находить баланс между "бюджетом" транзисторов, размером кристалла, энергопотреблением и производительностью/задержками.

Ассоциативность

Записи в оперативной памяти могут привязываться к кэшу напрямую (direct-mapped), то есть для копии данных из оперативной памяти существует только одна позиция в кэше, либо они могут быть ассоциативны в n-степени (n-way associative), то есть существует n возможных расположений в кэше, где могут храниться эти данные. Более высокая степень ассоциативности (вплоть до полностью ассоциативных кэшей) обеспечивает наилучшую гибкость кэширования, поскольку существующие данные в кэше не нужно переписывать. Другими словами, высокая n-степень ассоциативности гарантирует более высокий процент попаданий, но при этом увеличивается задержка, поскольку требуется больше времени на проверку всех этих ассоциаций для попадания. Как правило, наибольшая степень ассоциации разумна для последнего уровня кэширования, поскольку там доступна максимальная ёмкость, а поиск данных за пределами этого кэша приведёт к обращению процессора к медленной оперативной памяти.

Приведём несколько примеров: у Core i5 и i7 используется 32 кбайт кэша L1 с 8-way ассоциативностью для данных и 32 кбайт кэша L1 с 4-way для инструкций. Понятно желание Intel, чтобы инструкции были доступны быстрее, а у кэша L1 для данных был максимальный процент попаданий. Кэш L2 у процессоров Intel обладает 8-way ассоциативностью, а кэш L3 у Intel ещё "умнее", поскольку в нём реализована 16-way ассоциативность для максимизации попаданий.

Однако AMD следует другой стратегии с процессорами Phenom II X4, где используется кэш L1 с 2-way ассоциативностью для снижения задержек. Чтобы компенсировать возможные промахи ёмкость кэша была увеличена в два раза: 64 кбайт для данных и 64 кбайт для инструкций. Кэш L2 имеет 8-way ассоциативность, как и у дизайна Intel, но кэш L3 у AMD работает с 48-way ассоциативностью. Но решение выбора той или иной архитектуры кэша нельзя оценивать без рассмотрения всей архитектуры CPU. Вполне естественно, что практическое значение имеют результаты тестов, и нашей целью как раз была практическая проверка всей этой сложной многоуровневой структуры кэширования.

Каждый современный процессор имеет выделенный кэш, которых хранит инструкции и данные процессора, готовые к использованию практически мгновенно. Этот уровень обычно называют первым уровнем кэширования или L1, впервые такой кэш появился у процессоров 486DX. Недавно процессоры AMD стали стандартно использовать по 64 кбайт кэша L1 на ядро (для данных и инструкций), а процессоры Intel используют по 32 кбайт кэша L1 на ядро (тоже для данных и инструкций)

Кэш первого уровня впервые появился на процессорах 486DX, после чего он стал составной функцией всех современных CPU.

Кэш второго уровня (L2) появился на всех процессорах после выхода Pentium III, хотя первые его реализации на упаковке были в процессоре Pentium Pro (но не на кристалле). Современные процессоры оснащаются до 6 Мбайт кэш-памяти L2 на кристалле. Как правило, такой объём разделяется между двумя ядрами на процессоре Intel Core 2 Duo, например. Обычные же конфигурации L2 предусматривают 512 кбайт или 1 Мбайт кэша на ядро. Процессоры с меньшим объёмом кэша L2, как правило, относятся к нижнему ценовому уровню. Ниже представлена схема ранних реализаций кэша L2.

У Pentium Pro кэш L2 находился в упаковке процессора. У последовавших поколений Pentium III и Athlon кэш L2 был реализован через отдельные чипы SRAM, что было в то время очень распространено (1998, 1999).

Последовавшее объявление техпроцесса до 180 нм позволило производителям, наконец, интегрировать кэш L2 на кристалл процессора.


Первые двуядерные процессоры просто использовали существующие дизайны, когда в упаковку устанавливалось два кристалла. AMD представила двуядерный процессор на монолитном кристалле, добавила контроллер памяти и коммутатор, а Intel для своего первого двуядерного процессора просто собрала два одноядерных кристалла в одной упаковке.


Впервые кэш L2 стал использоваться совместно двумя вычислительными ядрами на процессорах Core 2 Duo. AMD пошла дальше и создала свой первый четырёхъядерный Phenom "с нуля", а Intel для своего первого четырёхъядерного процессора вновь использовала пару кристаллов, на этот раз уже два двуядерных кристалла Core 2, чтобы снизить расходы.

Кэш третьего уровня существовал ещё с первых дней процессора Alpha 21165 (96 кбайт, процессоры представлены в 1995) или IBM Power 4 (256 кбайт, 2001). Однако в архитектурах на основе x86 кэш L3 впервые появился вместе с моделями Intel Itanium 2, Pentium 4 Extreme (Gallatin, оба процессора в 2003 году) и Xeon MP (2006).

Первые реализации давали просто ещё один уровень в иерархии кэша, хотя современные архитектуры используют кэш L3 как большой и общий буфер для обмена данными между ядрами в многоядерных процессорах. Это подчёркивает и высокая n-степень ассоциативности. Лучше поискать данные чуть дольше в кэше, чем получить ситуацию, когда несколько ядер используют очень медленный доступ к основной оперативной памяти. AMD впервые представила кэш L3 на процессоре для настольных ПК вместе с уже упоминавшейся линейкой Phenom. 65-нм Phenom X4 содержал 2 Мбайт общего кэша L3, а современные 45-нм Phenom II X4 имеют уже 6 Мбайт общего кэша L3. У процессоров Intel Core i7 и i5 используется 8 Мбайт кэша L3.

Современные четырёхъядерные процессоры имеют выделенные кэши L1 и L2 для каждого ядра, а также большой кэш L3, являющийся общим для всех ядер. Общиё кэш L3 также позволяет обмениваться данными, над которыми ядра могут работать параллельно.


Приветствуем вас на сайте GECID.com! Хорошо известно, что тактовая частота и количество ядер процессора напрямую влияют на уровень производительности, особенно в оптимизированных под многопоточность проектах. Мы же решили проверить, какую роль в этом играет кэш-память уровня L3?

Для исследования этого вопроса нам был любезно предоставлен интернет-магазином pcshop.ua 2-ядерный процессор с номинальной рабочей частотой 3,7 ГГц и 3 МБ кэш-памяти L3 с 12-ю каналами ассоциативности. В роли оппонента выступил 4-ядерный , у которого были отключены два ядра и снижена тактовая частота до 3,7 ГГц. Объем же кэша L3 у него составляет 8 МБ, и он имеет 16 каналов ассоциативности. То есть ключевая разница между ними заключается именно в кэш-памяти последнего уровня: у Core i7 ее на 5 МБ больше.

Если это ощутимо повлияет на производительность, тогда можно будет провести еще один тест с представителем серии Core i5, у которых на борту 6 МБ кэша L3.

Но пока вернемся к текущему тесту. Помогать участникам будет видеокарта и 16 ГБ оперативной памяти DDR4-2400 МГц. Сравнивать эти системы будем в разрешении Full HD.

Для начала начнем с рассинхронизированных живых геймплев, в которых невозможно однозначно определить победителя. В Dying Light на максимальных настройках качества обе системы показывают комфортный уровень FPS, хотя загрузка процессора и видеокарты в среднем была выше именно в случае Intel Core i7.

Arma 3 имеет хорошо выраженную процессорозависимость, а значит больший объем кэш-памяти должен сыграть свою позитивную роль даже при ультравысоких настройках графики. Тем более что нагрузка на видеокарту в обоих случаях достигала максимум 60%.

Игра DOOM на ультравысоких настройках графики позволила синхронизировать лишь первые несколько кадров, где перевес Core i7 составляет около 10 FPS. Рассинхронизация дельнейшего геймплея не позволяет определить степень влияния кэша на скорость видеоряда. В любом случае частота держалась выше 120 кадров/с, поэтому особого влияния даже 10 FPS на комфортность прохождения не оказывают.

Завершает мини-серию живых геймплеев Evolve Stage 2 . Здесь мы наверняка увидели бы разницу между системами, поскольку в обоих случаях видеокарта загружена ориентировочно на половину. Поэтому субъективно кажется, что уровень FPS в случае Core i7 выше, но однозначно сказать нельзя, поскольку сцены не идентичные.

Более информативную картину дают бенчмарки. Например, в GTA V можно увидеть, что за городом преимущество 8 МБ кэша достигает 5-6 кадров/с, а в городе - до 10 FPS благодаря более высокой загрузке видеокарты. При этом сам видеоускоритель в обоих случаях загружен далеко не на максимум, и все зависит именно от CPU.

Третий ведьмак мы запустили с запредельными настройками графики и высоким профилем постобработки. В одной из заскриптованных сцен преимущество Core i7 местами достигает 6-8 FPS при резкой смене ракурса и необходимости подгрузки новых данных. Когда же нагрузка на процессор и видеокарту опять достигают 100%, то разница уменьшается до 2-3 кадров.

Максимальный пресет графических настроек в XCOM 2 не стал серьезным испытанием для обеих систем, и частота кадров находилась в районе 100 FPS. Но и здесь больший объем кэш-памяти трансформировался в прибавку к скорости от 2 до 12 кадров/с. И хотя обоим процессорам не удалось по максимум загрузить видеокарту, вариант на 8 МБ и в этом вопросе местами преуспевал лучше.

Больше всего удивила игра Dirt Rally , которую мы запустили с пресетом очень высоко. В определенные моменты разница доходила до 25 кадров/с исключительно из-за большего объема кэш-памяти L3. Это позволяло на 10-15% лучше загружать видеокарту. Однако средние показатели бенчмарка показали более скромную победу Core i7 - всего 11 FPS.

Интересная ситуация получилась и с Rainbow Six Siege : на улице, в первых кадрах бенчмарка, преимущество Core i7 составляло 10-15 FPS. Внутри помещения загрузка процессоров и видеокарты в обоих случаях достигла 100%, поэтому разница уменьшилась до 3-6 FPS. Но в конце, когда камера вышла за пределы дома, отставание Core i3 опять местами превышало 10 кадров/с. Средний же показатель оказался на уровне 7 FPS в пользу 8 МБ кэша.

The Division при максимальном качестве графики также хорошо реагирует на увеличение объема кэш памяти. Уже первые кадры бенчмарка по полной загрузили все потоки Core i3, а вот общая нагрузка на Core i7 составляла 70-80%. Однако разница в скорости в эти моменты составляла всего 2-3 FPS. Чуть позже нагрузка на оба процессора достигла 100%, а разница в определенные моменты уже была за Core i3, но лишь на 1-2 кадра/с. В среднем же она составила около 1 FPS в пользу Core i7.

В свою очередь бенчмарк Rise of Tomb Rider при высоких настройках графики во всех трех тестовых сценах наглядно показал преимущество процессора с значительно большим объемом кэш памяти. Средние показатели у него на 5-6 FPS лучше, но если внимательно посмотреть каждую сцену, то местами отставание Core i3 превышает 10 кадров/с.

А вот при выборе пресета с очень высокими настройками возрастает нагрузка на видеокарту и процессоры, поэтому в большинстве своем разница между системами уменьшается до нескольких кадров. И лишь кратковременно Core i7 может показывать более значимые результаты. Средние показатели его преимущества по итогам бенчмарка снизились до 3-4 FPS.

Hitman также меньше подвержен влиянию кэш-памяти L3. Хотя и здесь при ультравысоком профиле детализации дополнительные 5 МБ обеспечили лучшую загрузку видеокарты, превратив это в дополнительные 3-4 кадра/с. Особо критичного влияния на производительность они не оказывают, но из чисто спортивного интереса приятно, что есть победитель.

Высокие настройки графики Deus ex: Mankind divided сразу же потребовали максимальной вычислительной мощности от обеих систем, поэтому разница в лучшем случае составляла 1-2 кадра в пользу Core i7, на что указывает и средний показатель.

Повторный запуск при ультравысоком пресете еще сильнее загрузил видеокарту, поэтому влияние процессора на общую скорость стало еще меньшим. Соответственно, разница в кэш-памяти L3 практически не влияла на ситуацию и средний FPS отличался менее чем на полкадра.

По итогам тестирования можно отметить, что влияние кэш-памяти L3 на производительность в играх действительно имеет место, но оно проявляется лишь тогда, когда видеокарта не загружена на полную мощность. В таких случаях можно было бы получить прирост в 5-10 FPS, если бы кэш увеличился в 2,5 раза. То есть ориентировочно получается, что при прочих равных каждый дополнительный МБ кэш-памяти L3 добавляет только 1-2 FPS к скорости отображения видеоряда.

Так что, если сравнивать соседние линейки, например, Celeron и Pentium, или модели с разным объем кэш-памяти L3 внутри серии Core i3, то основной прирост производительности достигается благодаря более высоким частотам, а потом и наличию дополнительных процессорных потоков и ядер. Поэтому, выбирая процессор, в первую очередь, все же, нужно ориентироваться на основные характеристики, а только потом обращать внимание на объем кэш-памяти.

На этом все. Спасибо за внимание. Надеемся, этот материал был полезным и интересным.

Статья прочитана 20752 раз(а)

Подписаться на наши каналы
  • Научно-популярное ,
  • Процессоры
  • Чипы на большинстве современных настольных компьютеров имеют четыре ядра, но производители микросхем уже объявили о планах перехода на шесть ядер, а для высокопроизводительных серверов и сегодня 16-ядерные процессоры далеко не редкость.

    Чем больше ядер, тем больше проблема распределения памяти между всеми ядрами при одновременной совместной работе. С увеличением числа ядер всё больше выгодно минимизировать потери времени на управлении ядрами при обработке данных - ибо скорость обмена данными отстает от скорости работы процессора и обработки данных в памяти. Можно физически обратиться к чужому быстрому кэшу, а можно к своему медленному, но сэкономить на времени передаче данных. Задача усложняется тем, что запрашиваемые программами объемы памяти не четко соответствуют объемам кэш-памяти каждого типа.

    Физически разместить максимально близко к процессору можно только очень ограниченный объем памяти - кэш процесcора уровня L1, объем которого крайне незначителен. Даниэль Санчес (Daniel Sanchez), По-Ан Цай (Po-An Tsai) и Натан Бэкмен (Nathan Beckmann) - исследователи из лаборатории компьютерных наук и искусственного интеллекта Массачусетского технологического института - научили компьютер конфигурировать разные виды своей памяти под гибко формируемую иерархию программ в реальном режиме времени. Новая система, названная Jenga, анализирует объемные потребности и частоту обращения программ к памяти и перераспределяет мощности каждого из 3 видов процессорного кэша в комбинациях обеспечивающих рост эффективности и экономии энергии.


    Для начала исследователи протестировали рост производительности при комбинации статичной и динамической памяти в работе над программами для одноядерного процессора и получили первичную иерархию - когда какую комбинацию лучше применять. Из 2 видов памяти или из одного. Оценивались два параметра -задержка сигнала (латентность) и потребляемая энергия при работе каждой из программ. Примерно 40% программ стали работать хуже при комбинации видов памяти, остальные - лучше. Зафиксировав какие программы «любят» смешанное быстродействие, а какие - размер памяти, исследователи построили свою систему Jenga.

    Они виртуально протестировали 4 виды программ на виртуальном компьютере с 36 ядрами. Тестировали программы:

    • omnet - Objective Modular Network Testbed, библиотека моделирования C и платформа сетевых средств моделирования (синий цвет на рисунке)
    • mcf - Meta Content Framework (красный цвет)
    • astar - ПО для отображения виртуальной реальности (зеленый цвет)
    • bzip2 - архиватор (фиолетовый цвет)


    На картинке показано где и как обрабатывали данные каждой из программ. Буквы показывают, где выполняется каждое приложение (по одному на квадрант), цвета показывают, где находятся его данные, а штриховка указывает на второй уровень виртуальной иерархии, когда он присутствует.

    Уровни кэша

    Кэш центрального процессора разделён на несколько уровней. Для универсальных процессоров - до 3. Самой быстрой памятью является кэш первого уровня - L1-cache, поскольку расположена на одном с процессором кристалле. Состоит из кэша команд и кэша данных. Некоторые процессоры без L1 кэша не могут функционировать. L1 кэш работает на частоте процессора, и обращение к нему может производиться каждый такт. Зачастую является возможным выполнять несколько операций чтения/записи одновременно. Объём обычно невелик - не более 128 Кбайт.

    С кэшем L1 взаимодействует кэш второго уровня - L2. Он является вторым по быстродействию. Обычно он расположен либо на кристалле, как и L1, либо в непосредственной близости от ядра, например, в процессорном картридже. В старых процессорах - набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования - при общем объёме кэша в 8 Мбайт на каждое ядро приходится по 2 Мбайта. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра. В задачах, связанных с многочисленными обращениями к ограниченной области памяти, например, СУБД, его полноценное использование дает рост производительность в десятки раз.

    Кэш L3 обычно еще больше по размеру, хотя и несколько медленнее, чем L2 (за счет того, что шина между L2 и L3 более узкая, чем шина между L1 и L2). L3 обычно расположен отдельно от ядра ЦП, но может быть большим - более 32 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании. Применение кэша третьего уровня оправдано в очень узком круге задач и может не только не дать увеличения производительности, но наоборот и привести к общему снижению производительности системы.

    Отключение кэша второго и третьего уровней наиболее полезно в математических задачах, когда объём данных меньше размера кэша. В этом случае, можно загрузить все данные сразу в кэш L1, а затем производить их обработку.


    Периодически Jenga на уровне ОС реконфигурирует виртуальные иерархии для минимизации объемов обмена данных, учитывая ограниченность ресурсов и поведение приложений. Каждая реконфигурация состоит из четырех шагов.

    Jenga распределяет данные не только в зависимости от того, какие программы диспетчеризируются - любящие большую односкоростную память или любящие быстродействие смешанных кэшей, но и в зависимости от физической близости ячеек памяти к обрабатываемым данным. Независимо от того - какой вид кэша требует программа по умолчанию или по иерархии. Главное чтобы минимизировать задержку сигнала и энергозатраты. В зависимости от того, сколько видов памяти «любит» программа, Jenga моделирует латентность каждой виртуальной иерархии с одним или двумя уровнями. Двухуровневые иерархии образуют поверхность, одноуровневые иерархии - кривую. Затем Jenga проектирует минимальную задержку в размерах VL1, что дает две кривые. Наконец, Jenga использует эти кривые для выбора лучшей иерархии (то есть размера VL1).

    Применение Jenga дало ощутимый эффект. Виртуальный 36-ядерный чип стал работать на 30 процентов быстрее и использовал на 85 процентов меньше энергии. Конечно, пока Jenga - просто симуляция работающего компьютера и пройдет некоторое время, прежде чем вы увидите реальные примеры этого кеша и еще до того, как производители микросхем примут его, если понравится технология.

    Конфигурация условной 36 ядерной машины

    • Процессоры . 36 ядер, x86-64 ISA, 2.4 GHz, Silvermont-like OOO: 8B-wide
      ifetch; 2-level bpred with 512×10-bit BHSRs + 1024×2-bit PHT, 2-way decode/issue/rename/commit, 32-entry IQ and ROB, 10-entry LQ, 16-entry SQ; 371 pJ/instruction, 163 mW/core static power
    • Кэши уровня L1 . 32 KB, 8-way set-associative, split data and instruction caches,
      3-cycle latency; 15/33 pJ per hit/miss
    • Служба предварительной выборки Prefetchers . 16-entry stream prefetchers modeled after and validated against
      Nehalem
    • Кэши уровня L2 . 128 KB private per-core, 8-way set-associative, inclusive, 6-cycle latency; 46/93 pJ per hit/miss
    • Когерентный режим (Coherence) . 16-way, 6-cycle latency directory banks for Jenga; in-cache L3 directories for others
    • Global NoC . 6×6 mesh, 128-bit flits and links, X-Y routing, 2-cycle pipelined routers, 1-cycle links; 63/71 pJ per router/link flit traversal, 12/4mW router/link static power
    • Блоки статической памяти SRAM . 18 MB, one 512 KB bank per tile, 4-way 52-candidate zcache, 9-cycle bank latency, Vantage partitioning; 240/500 pJ per hit/miss, 28 mW/bank static power
    • Многослойная динамическая память Stacked DRAM . 1152MB, one 128MB vault per 4 tiles, Alloy with MAP-I DDR3-3200 (1600MHz), 128-bit bus, 16 ranks, 8 banks/rank, 2 KB row buffer; 4.4/6.2 nJ per hit/miss, 88 mW/vault static power
    • Основная память . 4 DDR3-1600 channels, 64-bit bus, 2 ranks/channel, 8 banks/rank, 8 KB row buffer; 20 nJ/access, 4W static power
    • DRAM timings . tCAS=8, tRCD=8, tRTP=4, tRAS=24, tRP=8, tRRD=4, tWTR=4, tWR=8, tFAW=18 (все тайминги в tCK; stacked DRAM has half the tCK as main memory)

    Кэш — память (кеш , cash , буфер — eng.) — применяется в цифровых устройствах, как высокоскоростной буфер обмена. Кэш память можно встретить на таких устройствах компьютера как , процессоры, сетевые карты, приводы компакт дисков и многих других.

    Принцип работы и архитектура кэша могут сильно отличаться.

    К примеру, кэш может служить как обычный буфер обмена . Устройство обрабатывает данные и передаёт их в высокоскоростной буфер, где контроллёр передаёт данные на интерфейс. Предназначен такой кэш для предотвращения ошибок, аппаратной проверки данных на целостность, либо для кодировки сигнала от устройства в понятный сигнал для интерфейса, без задержек. Такая система применяется например в CD/DVD приводах компакт дисков.

    В другом случае, кэш может служить для хранения часто используемого кода и тем самым ускорения обработки данных. То есть, устройству не нужно снова вычислять или искать данные, что заняло бы гораздо больше времени, чем чтение их из кэш-а. В данном случае очень большую роль играет размер и скорость кэш-а.

    Такая архитектура чаще всего встречается на жёстких дисках, и центральных процессорах (CPU ).

    При работе устройств, в кэш могут загружаться специальные прошивки или программы диспетчеры, которые работали бы медленней с ПЗУ (постоянное запоминающее устройство).

    Большинство современных устройство, используют смешанный тип кэша , который может служить как буфером обмена, как и для хранения часто используемого кода.

    Существует несколько очень важных функций, реализуемых для кэша процессоров и видео чипов.

    Объединение исполнительных блоков . В центральных процессорах и видео процессорах часто используется быстрый общий кэш между ядрами. Соответственно, если одно ядро обработало информацию и она находится в кэше, а поступает команда на такую же операцию, либо на работу с этими данными, то данные не будут снова обрабатываться процессором, а будут взяты из кэша для дальнейшей обработки. Ядро будет разгружено для обработки других данных. Это значительно увеличивает производительность в однотипных, но сложных вычислениях, особенно если кэш имеет большой объём и скорость.

    Общий кэш , также позволяет ядрам работать с ним напрямую, минуя медленную .

    Кэш для инструкций. Существует либо общий очень быстрый кэш первого уровня для инструкций и других операций, либо специально выделенный под них. Чем больше в процессоре заложенных инструкций, тем больший кэш для инструкций ему требуется. Это уменьшает задержки памяти и позволяет блоку инструкций функционировать практически независимо.При его заполнении, блок инструкций начинает периодически простаивать, что замедляет скорость вычисления.

    Другие функции и особенности .

    Примечательно, что в CPU (центральных процессорах), применяется аппаратная коррекция ошибок (ECC ), потому как небольшая ошибочка в кэше, может привести к одной сплошной ошибке при дальнейшей обработке этих данных.

    В CPU и GPU существует иерархия кэш памяти , которая позволяет разделять данные для отдельных ядер и общие. Хотя почти все данные из кэша второго уровня, всё равно копируются в третий, общий уровень, но не всегда. Первый уровень кеша — самый быстрый, а каждый последующий всё медленней, но больше по размеру.

    Для процессоров, нормальным считается три и менее уровней кэша. Это позволяет добиться сбалансированности между скоростью, размером кэша и тепловыделением. В видеопроцессорах сложно встретить более двух уровней кэша.

    Размер кэша, влияние на производительность и другие характеристики .

    Естественно, чем больше кэш , тем больше данных он может хранить и обрабатывать, но тут есть серьёзная проблема.

    Большой кеш — это большой бюджет . В серверных процессорах (CPU ), кэш может использовать до 80% транзисторного бюджета. Во первых, это сказывается на конечной стоимости, а во вторых увеличивается энергопотребление и тепловыделение, которое не сопоставимо с увеличенной на несколько процентов производительностью.

    Что такое кэш память процессора

    Выполняет примерно ту же функцию, что и оперативная память . Только кэш - это память встроенная в процессор . Кэш-память используется процессором для хранения информации. В ней буферизируются самые часто используемые данные, за счет чего, время очередного обращения к ним значительно сокращается. Если емкость оперативной памяти на новых компьютерах от 1 Гб, то кэш у них около 2-8 Мб. Как видите, разница в объеме памяти ощутимая. Но даже этого объема вполне хватает, чтобы обеспечить нормальное быстродействие всей системы. Сейчас распространены процессоры с двумя уровнями кэш-памяти: L1 (первый уровень) и L2 (второй). Кэш первого уровня намного меньше кэша второго уровня, он обычно около 128 Кб. Используется он для хранения инструкций. А вот второй уровень используется для хранения данных, поэтому он больше. Кэш второго уровня сейчас у большинства процессоров общий. Но не у всех, вот например у AMD Athlon 64 X 2 у каждого ядра по своему кэшу L2. Кампания AMD обещает в скором времени предоставить процессор AMD Phenom с четырьмя ядрами и тремя уровнями кэш-памяти.

    Программный кэш

    Кэш процессора часто путают с программным кэшем. Это совершенно разные вещи, хотя и выполняют схожую функцию. Кэш процессора это микросхема, встроенная в процессор , которая помогает ему быстро обрабатывать информацию. Программный кэш - это папка или какой-нибудь файл на жестком диске, где какая -то программа хранит нужную ей информацию. Рассмотрим на примере: Вы загрузили мой сайт, шапка сайта (картинка, находящаяся в самом верху) и остальные рисунки сохранились кэше вашего браузера. Если вы вернетесь сюда, например, завтра, то картинки уже будут грузиться не из интернета, а из кэша вашего компьютера, что экономит ваши деньги. Если у вас браузер Opera, то папка с изображениями которые вы загружали находится по адресу.

    Loading...Loading...